Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Trop Anim Health Prod ; 55(5): 287, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37542536

RESUMO

The tsinling lenok trout (Brachymystax Lenok tsinlingensis) is a typical land-locked cold salmon. In this study, through the acute high temperature stress (16, 24, and 26°C), samples were taken at multiple temperature points to analyze the dynamic changes of serum non-specific immune indexes and histopathological changes of tissues of tsinling lenok trout. The histopathological investigation of different studied tissues revealed an increase of histological lesions' frequency and severity with increasing water temperature. The activity of T-SOD, GSH-Px, CAT, ACP, and LZM and MDA concentration are all impacted by high temperature stress. The activities of T-SOD, GSH-Px, and ACP are significantly lower in temperatures higher than 16°C (P<0.05). However, with the increase of water temperature, MDA content increased significantly. The activities of CAT and LZM were the highest at 24°C, which were significantly higher than those at 26°C (P<0.05). The above results indicate that 24°C is a "critical high temperature point" for tsinling lenok trout under heat stress, and this temperature point may be the critical point for tsinling lenok trout to enter "damaged" from adaptive adjustment. Our results can provide a theoretical basis for the development of genetic breeding, improvement, and control measures of heat stress in tsinling lenok trout in the future.


Assuntos
Salmonidae , Truta , Animais , Antioxidantes , Salmonidae/genética , Superóxido Dismutase , Água
2.
ACS Appl Mater Interfaces ; 9(17): 14749-14757, 2017 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-28406287

RESUMO

Considering the significant influence of oxygen-containing groups on the surface of carbon involved electrodes, a carbon nanotube (CNT)-based MnO2 composite catalyst was synthesized following a facile method while using polymerized ionic liquids (PIL) as sacrifice agent. Herein, the PIL (polymerized hydrophobic 1-vinyl-3-ethylimidazolium bis ((trifluoromethyl)sulfonyl)imide) wrapped CNTs were prepared. The composite was applied to support MnO2 by the treatment of KMnO4 solution, taking advantage of the reaction between PIL and KMnO4, which excludes or suppresses the oxidation of CNTs, and the as-synthesized material with fewer oxygen-containing groups acted as a cathode catalyst for Li-O2 batteries, directly avoiding the application of binders. The catalyst shows enhanced activity compared to that of the samples without PIL, as verified by the lower overpotential during discharging and charging (0.97 V at the current density of 100 mA g-1). Meanwhile, the performance parameters such as Coulombic efficiency and rate capability were also improved for the Li-O2 battery utilizing this catalyst. Further, the formation of confined Li2O2 particles could be responsible for the reduction of charge potential of Li-O2 batteries due to the synergy effect of the intrinsic catalytic activity of MnO2 and fewer oxygen functional groups on the catalyst surface.

3.
Environ Sci Pollut Res Int ; 23(1): 418-25, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26308927

RESUMO

Current tools to predict biofilm thickness and viability in spatial distribution are poor, especially those based on chemical oxygen demand (COD), total nitrogen (TN), and total phosphate (TP) due to their limited data and complex calculations. Here, support vector regression (SVR) was used to predict biofilm thickness and viability in a reactor filled with carriers of crushed stone globular aggregates. Analyses combined confocal laser scanning microscopy and flow cytometry with Kriging interpolation revealed that biofilm thickness varied from 22 to 31 µm, and biofilm viability decreased from 80 to 30% in the flow direction of the reactor. The biofilm thickness at the bottom was thicker than that in the upper layer, but biofilm viability contrasted with biofilm thickness in the vertical distribution. The values of biofilm thickness and viability were predicted at a layer 35 cm from the bottom of the reactor with mean squared error values of 0.014 and 0.011, respectively. Correlation coefficients were 0.996 and 0.997 between carbon-nitrogen-phosphorus (C-N-P) removal with biofilm thickness and viability in spatial distribution, respectively. This study provided an important mathematical method to predict biofilm thickness and viability in spatial distribution based on the concentration of C-N-P.


Assuntos
Bactérias/química , Biofilmes/crescimento & desenvolvimento , Carbono/análise , Nitrogênio/análise , Fósforo/análise , Bactérias/crescimento & desenvolvimento , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos/microbiologia
4.
J Phys Chem B ; 117(9): 2764-72, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23398446

RESUMO

Because of its sensitivity to chemical and electrostatic characteristics, nitrile group as an infrared (IR) probe to monitor the local structure, folding kinetics, and electrostatic environment of protein, or solvation of molecular solvents, has attracted increasing attention. Herein, by choosing benzonitrile and imidazolium ionic liquids (ILs) as the IR probe and model ILs, respectively, we report that the nitrile stretching vibration (νCN) could be utilized as a simple and substantial IR probe to monitor the local environment of ILs such as hydrogen bonding (H-bonding) as well as intrinsic electric field. In 1-alkyl-3-methylimidazolium-based non-hydroxyl ILs, the νCN is in a "free" state, and is less affected by the alkyl chain, while it significantly decreases with the effective anion charge. In 1-(2-hydroxyethyl)-3-methylimidazolium-based hydroxyl ILs, however, a distinct anion-dependent νCN forming H-bonding with the hydroxyl is also observed besides the "free" νCN band. The "free" component of νCN can be further employed to determine the intrinsic electric field in both non-hydroxyl (directly) and hydroxyl (indirectly by subtracting H-bonding contribution) ILs by using vibrational Stark effect. Moreover, the result suggests that benzonitrile is preferentially located in the charge domain in ILs and it could be a more suitable probe to report the ionic network rather than the nonpolar domain in ILs.

5.
Chemistry ; 18(38): 11904-8, 2012 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-22907797

RESUMO

The electric fields of ionic liquids are only slightly higher than those of common molecular solvents, and are strongly structure-dependent; they noticeably decrease with anion size because of increased separation of ions, and slightly decrease as the alkyl chain elongates due to increasing spatial heterogeneity. These were the key results of vibrational Stark effect spectroscopy and molecular dynamics simulations.

6.
J Am Chem Soc ; 127(12): 4182-3, 2005 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-15783195

RESUMO

A simple, clean, safe, and reproducible catalyst system, polymer-supported nanogold, was successfully developed for the fixation of CO2 to cyclic carbonate and for the carbonylation of amines to disubstituted ureas with unprecedented catalytic activity (TOF > 50 000 mol/mol/h and TOFP approximately 3000 mol/mol/h, respectively). To the best of our knowledge, it was the first to report that nanogold catalysts have exclusive catalytic activity for activation of carbon dioxide, and that the catalytic activity of the polymer-immobilized nanogold catalysts could be controlled by the particle size of the nanogold.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA